Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
DNA Cell Biol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648538

RESUMO

Legg-Calve-Perthes disease (LCPD) is an idiopathic avascular necrosis of the pediatric femoral head. Bone remodeling and bone structural genes have the potential to contribute to the progression of LCPD when there is disequilibrium between bone resorption and bone formation. A case-control study was performed to search for associations of several common polymorphisms in the genes Receptor Activator for Nuclear Factor κappa B (RANK), Receptor Activator for Nuclear Factor κappa B Ligand (RANKL), osteoprotegerin (OPG), interleukin (IL)-6, and type 1 collagen (COL1A1) with LCPD susceptibility in Mexican children. A total of 23 children with LCPD and 46 healthy controls were genotyped for seven polymorphisms (rs3018362, rs12585014, rs2073618, rs1800795, rs1800796, rs1800012, and rs2586498) in the RANK, RANKL, OPG, IL-6, and COL1A1 genes by real-time polymerase chain reaction with TaqMan probes. The variant allele (C) of IL-6 rs1800795 was associated with increased risk of LCPD (odds ratio [OR]: 3.8, 95% confidence interval [CI]: [1.08-13.54], p = 0.033), adjusting data by body mass index (BMI) and coagulation factor V (FV), the association with increased risk remained (OR: 4.9, 95% CI: [1.14-21.04], p = 0.025). The OPG polymorphism rs2073618, specifically GC-GG carriers, was associated with a more than fourfold increased risk of developing LCPD (OR: 4.34, 95% CI: [1.04-18.12], p = 0.033) when data were adjusted by BMI-FV. There was no significant association between RANK rs3018362, RANKL rs12585014, IL-6 rs1800796, COL1A1 rs1800012, and rs2586498 polymorphisms and LCPD in a sample of Mexican children. The rs1800975 and rs2037618 polymorphisms in the IL-6 and OPG genes, respectively, are informative markers of increased risk of LCPD in Mexican children.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37962789

RESUMO

Testicular cancer (TCa) is a rare malignancy affecting young men worldwide. Sociodemographic factors, especially socioeconomic level (SEL) and healthcare access, seem to impact TCa incidence and outcomes, particularly among Hispanic populations. However, limited research has explored these variables in Hispanic groups. This study aimed to investigate sociodemographic and clinical factors in Mexico and their role in health disparities among Hispanic TCa patients. We retrospectively analyzed 244 Mexican TCa cases between 2007 and 2020 of a representative cohort with diverse social backgrounds from a national reference cancer center. Logistic regression identified risk factors for fatality: non-seminoma histology, advanced stage, and lower education levels. Age showed a significant trend as a risk factor. Patient delay and healthcare distance lacked significant associations. Inadequate treatment response and chemotherapy resistance were more likely in advanced stages, while higher education positively impacted treatment response. Cox regression highlighted non-seminoma histology, below-median SEL, higher education, and advanced-stage survival rates. Survival disparities emerged based on tumor histology and patient SEL. This research underscores the importance of comprehensive approaches that integrate sociodemographic, biological, and environmental factors to address health disparities improving outcomes through personalized interventions in Hispanic individuals with TCa.

3.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003293

RESUMO

Chemoresistance to standard neoadjuvant treatment commonly occurs in locally advanced breast cancer, particularly in the luminal subtype, which is hormone receptor-positive and represents the most common subtype of breast cancer associated with the worst outcomes. Identifying the genes associated with chemoresistance is crucial for understanding the underlying mechanisms and discovering effective treatments. In this study, we aimed to identify genes linked to neoadjuvant chemotherapy resistance in 62 retrospectively included patients with luminal breast cancer. Whole RNA sequencing of 12 patient biopsies revealed 269 differentially expressed genes in chemoresistant patients. We further validated eight highly correlated genes associated with resistance. Among these, solute carrier family 12 member 1 (SLC12A1) and glutamate ionotropic AMPA type subunit 4 (GRIA4), both implicated in ion transport, showed the strongest association with chemoresistance. Notably, SLC12A1 expression was downregulated, while protein levels of glutamate receptor 4 (GLUR4), encoded by GRIA4, were elevated in patients with a worse prognosis. Our results suggest a potential link between SLC12A1 gene expression and GLUR4 protein levels with chemoresistance in luminal breast cancer. In particular, GLUR4 protein could serve as a potential target for drug intervention to overcome chemoresistance.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Membrana Transportadoras , Terapia Neoadjuvante , Estudos Retrospectivos , Membro 1 da Família 12 de Carreador de Soluto
4.
J Vis Exp ; (199)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37677025

RESUMO

Long noncoding RNAs (lncRNAs) play key regulatory roles in gene expression at the transcriptional level. Experimental evidence has established that a substantial fraction of lncRNA preferentially accumulates in the nucleus. For analysis of the function of nuclear lncRNAs, it is important to achieve efficient knockdown of these transcripts inside the nucleus. In contrast to the use of RNA interference, a technology that depends on the cytoplasmic silencing machinery, an antisense oligonucleotide (ASO) technology can achieve RNA knockdown by recruiting RNase H to the RNA-DNA duplexes for nuclear RNA cleavage. Unlike the use of CRISPR-Cas tools for genome engineering, where possible alterations in the chromatin state can occur, ASOs allow the efficient knockdown of nuclear transcripts without modifying the genome. Nevertheless, one of the major obstacles to ASO-mediated knockdown is its transitory effect. For the study of long-lasting effects of lncRNA silencing, maintaining efficient knockdown for a long time is needed. In this study, a protocol was developed to achieve a knockdown effect for over 21 days. The purpose was to evaluate the cis-regulatory effects of lncRNA knockdown on the adjacent coding gene RFC4, which is related to chromosomal instability, a condition that is observed only through time and cell aging. Two different human cell lines were used: PrEC, normal primary prostate epithelial cells, and HCT116, an epithelial cell line isolated from colorectal carcinoma, achieving successful knockdown in the assayed cell lines.


Assuntos
Oligonucleotídeos Antissenso , RNA Longo não Codificante , Masculino , Humanos , Oligonucleotídeos Antissenso/genética , RNA Longo não Codificante/genética , Núcleo Celular , Oligonucleotídeos , Linhagem Celular
5.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108589

RESUMO

Given their tumor-specific and stage-specific gene expression, long non-coding RNAs (lncRNAs) have demonstrated to be potential molecular biomarkers for diagnosis, prognosis, and treatment response. Particularly, the lncRNAs DSCAM-AS1 and GATA3-AS1 serve as examples of this because of their high subtype-specific expression profile in luminal B-like breast cancer. This makes them candidates to use as molecular biomarkers in clinical practice. However, lncRNA studies in breast cancer are limited in sample size and are restricted to the determination of their biological function, which represents an obstacle for its inclusion as molecular biomarkers of clinical utility. Nevertheless, due to their expression specificity among diseases, such as cancer, and their stability in body fluids, lncRNAs are promising molecular biomarkers that could improve the reliability, sensitivity, and specificity of molecular techniques used in clinical diagnosis. The development of lncRNA-based diagnostics and lncRNA-based therapeutics will be useful in routine medical practice to improve patient clinical management and quality of life.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Qualidade de Vida , Reprodutibilidade dos Testes , Biomarcadores , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica
6.
Nutrients ; 14(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36501225

RESUMO

BACKGROUND AND AIMS: Currently, treatments are being sought to improve the control of type II diabetes mellitus (T2DM), and inulin has been shown to be effective in reducing glucose levels and other metabolic control parameters. These effects on metabolic control may be associated with changes in the epigenetic modulation of genes of the insulin pathway. Therefore, our objective is to determine the effect of agave inulin in metabolic control parameters and in INS and IRS1 genes' methylation in T2DM patients. METHODS: This was a longitudinal experimental study with 67 Mexican participants who received an intervention of inulin agave (10 g daily) for 2 months. The methylation of the INS and IRS1 genes was determined by MSP. RESULTS: For the INS gene, we found a significant decrease in the proportions of T2DM patients with methylated DNA after inulin intervention (p = 0.0001). In contrast, the difference in the proportions of the unmethylated IRS1 gene before and after the inulin intervention was not significant (p = 0.79). On the other hand, we observed changes in the number of T2DM patients' recommended categories for metabolic control depending on the methylation of INS and IRS1 genes before and after treatment with inulin. CONCLUSION: For the first time, we report the modification in the methylation of two genes, INS and IRS1, of the insulin pathway and provide information on the possible relevant role of epigenetics as a key factor in positive changes in metabolic control parameters by inulin intake in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Inulina/metabolismo , Metilação , Insulina/metabolismo , México , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo
7.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361550

RESUMO

Alterations in DNA methylation are critical for the carcinogenesis of ovarian tumors, especially ovarian carcinoma (OC). DNMT3B, a de novo DNA methyltransferase (DNMT), encodes for fifteen spliced protein products or isoforms. DNMT3B isoforms lack exons for the catalytic domain, with functional consequences on catalytic activity. Abnormal expression of DNMT3B isoforms is frequently observed in several types of cancer, such as breast, lung, kidney, gastric, liver, skin, leukemia, and sarcoma. However, the expression patterns and consequences of DNMT3B isoforms in OC are unknown. In this study, we analyzed each DNMT and DNMT3B isoforms expression by qPCR in 63 OC samples and their association with disease-free survival (DFS), overall survival (OS), and tumor progression. We included OC patients with the main histological subtypes of EOC and patients in all the disease stages and found that DNMTs were overexpressed in advanced stages (p-value < 0.05) and high-grade OC (p-value < 0.05). Remarkably, we found DNMT3B1 overexpression in advanced stages (p-value = 0.0251) and high-grade serous ovarian carcinoma (HGSOC) (p-value = 0.0313), and DNMT3B3 was overexpressed in advanced stages (p-value = 0.0098) and high-grade (p-value = 0.0004) serous ovarian carcinoma (SOC). Finally, we observed that overexpression of DNMT3B isoforms was associated with poor prognosis in OC and SOC. DNMT3B3 was also associated with FDS (p-value = 0.017) and OS (p-value = 0.038) in SOC patients. In addition, the ovarian carcinoma cell lines OVCAR3 and SKOV3 also overexpress DNMT3B3. Interestingly, exogenous overexpression of DNMT3B3 in OVCAR3 causes demethylation of satellite 2 sequences in the pericentromeric region. In summary, our results suggest that DNMT3B3 expression is altered in OC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Metilação de DNA , Apoptose , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Carcinoma Epitelial do Ovário/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , DNA/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232363

RESUMO

SARS-CoV-2 is a coronavirus family member that appeared in China in December 2019 and caused the disease called COVID-19, which was declared a pandemic in 2020 by the World Health Organization. In recent months, great efforts have been made in the field of basic and clinical research to understand the biology and infection processes of SARS-CoV-2. In particular, transcriptome analysis has contributed to generating new knowledge of the viral sequences and intracellular signaling pathways that regulate the infection and pathogenesis of SARS-CoV-2, generating new information about its biology. Furthermore, transcriptomics approaches including spatial transcriptomics, single-cell transcriptomics and direct RNA sequencing have been used for clinical applications in monitoring, detection, diagnosis, and treatment to generate new clinical predictive models for SARS-CoV-2. Consequently, RNA-based therapeutics and their relationship with SARS-CoV-2 have emerged as promising strategies to battle the SARS-CoV-2 pandemic with the assistance of novel approaches such as CRISPR-CAS, ASOs, and siRNA systems. Lastly, we discuss the importance of precision public health in the management of patients infected with SARS-CoV-2 and establish that the fusion of transcriptomics, RNA-based therapeutics, and precision public health will allow a linkage for developing health systems that facilitate the acquisition of relevant clinical strategies for rapid decision making to assist in the management and treatment of the SARS-CoV-2-infected population to combat this global public health problem.


Assuntos
COVID-19 , COVID-19/genética , COVID-19/terapia , Humanos , Pandemias , RNA Interferente Pequeno , SARS-CoV-2/genética , Transcriptoma
9.
Cancers (Basel) ; 14(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565196

RESUMO

Despite having a favorable response to platinum-based chemotherapies, ~15% of Testicular Germ-Cell Tumor (TGCT) patients are platinum-resistant. Mortality rates among Latin American countries have remained constant over time, which makes the study of this population of particular interest. To gain insight into this phenomenon, we conducted whole-exome sequencing, microarray-based comparative genomic hybridization, and copy number analysis of 32 tumors from a Mexican cohort, of which 18 were platinum-sensitive and 14 were platinum-resistant. We incorporated analyses of mutational burden, driver mutations, and SNV and CNV signatures. DNA breakpoints in genes were also investigated and might represent an interesting research opportunity. We observed that sensitivity to chemotherapy does not seem to be explained by any of the mutations detected. Instead, we uncovered CNVs, particularly amplifications on segment 2q11.1 as a novel variant with chemosensitivity biomarker potential. Our data shed light into understanding platinum resistance in a Latin-origin population.

10.
Prostate Cancer Prostatic Dis ; 25(3): 431-443, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35422101

RESUMO

BACKGROUND: Risk stratification or progression in prostate cancer is performed with the support of clinical-pathological data such as the sum of the Gleason score and serum levels PSA. For several decades, methods aimed at the early detection of prostate cancer have included the determination of PSA serum levels. The aim of this systematic review is to provide an overview about recent advances in the discovery of new molecular biomarkers through transcriptomics, genomics and artificial intelligence that are expected to improve clinical management of the prostate cancer patient. METHODS: An exhaustive search was conducted by Pubmed, Google Scholar and Connected Papers using keywords relating to the genetics, genomics and artificial intelligence in prostate cancer, it includes "biomarkers", "non-coding RNAs", "lncRNAs", "microRNAs", "repetitive sequence", "prognosis", "prediction", "whole-genome sequencing", "RNA-Seq", "transcriptome", "machine learning", and "deep learning". RESULTS: New advances, including the search for changes in novel biomarkers such as mRNAs, microRNAs, lncRNAs, and repetitive sequences, are expected to contribute to an earlier and accurate diagnosis for each patient in the context of precision medicine, thus improving the prognosis and quality of life of patients. We analyze several aspects that are relevant for prostate cancer including its new molecular markers associated with diagnosis, prognosis, and prediction to therapy and how bioinformatic approaches such as machine learning and deep learning can contribute to clinic. Furthermore, we also include current techniques that will allow an earlier diagnosis, such as Spatial Transcriptomics, Exome Sequencing, and Whole-Genome Sequencing. CONCLUSION: Transcriptomic and genomic analysis have contributed to generate knowledge in the field of prostate carcinogenesis, new information about coding and non-coding genes as biomarkers has emerged. Synergies created by the implementation of artificial intelligence to analyze and understand sequencing data have allowed the development of clinical strategies that facilitate decision-making and improve personalized management in prostate cancer.


Assuntos
MicroRNAs , Neoplasias da Próstata , Inteligência Artificial , Biomarcadores , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Humanos , Masculino , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Qualidade de Vida
11.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328692

RESUMO

The long noncoding RNA (lncRNA) telomeric repeat-containing RNA (TERRA) has been associated with telomeric homeostasis, telomerase recruitment, and the process of chromosome healing; nevertheless, the impact of this association has not been investigated during the carcinogenic process. Determining whether changes in TERRA expression are a cause or a consequence of cell transformation is a complex task because studies are usually carried out using either cancerous cells or tumor samples. To determine the role of this lncRNA in cellular aging and chromosome healing, we evaluated telomeric integrity and TERRA expression during the establishment of a clone of untransformed myeloid cells. We found that reduced expression of TERRA disturbed the telomeric homeostasis of certain loci, but the expression of the lncRNA was affected only when the methylation of subtelomeric bivalent chromatin domains was compromised. We conclude that the disruption in TERRA homeostasis is a consequence of cellular transformation and that changes in its expression profile can lead to telomeric and genomic instability.


Assuntos
RNA Longo não Codificante , Homeostase do Telômero , Cromatina/genética , Heterocromatina , Metilação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Telômero/genética , Telômero/metabolismo
12.
DNA Cell Biol ; 41(4): 437-446, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35285722

RESUMO

Single-nucleotide polymorphisms (SNPs) in the ESR1/ESR2 genes play a role in osteoporosis (OP). Our objective was to determine associations of polymorphisms in ESR genes with OP and fracture, SNP-SNP interactions, and involvement of comorbidities. We analyzed 170 Mexican osteoporotic women (FNOP), 173 with hip fracture (HFx), and 210 controls. The SNPs, ESR1 rs2234693CC, rs851982CC and rs1999805AA, were associated with reduced OP risk (odds ratios [ORs] = 0.35, 0.40 and 0.32, respectively; p < 0.05); rs2234693CC was associated with reduced fracture risk (OR = 0.24; p < 0.05). The obese/overweight carriers of rs9340799GG had a lower OP (OR = 0.15, p = 0.016) and fracture (OR = 0.12, p = 0.0057) risk. The rs9479055AA and rs3020404AA hypertensive carriers had a higher OP risk (OR = 5.96, p = 0.032; and OR = 5.29, p = 0.02, respectively). In addition, rs3020404AA had a higher risk of fracture (OR = 4.90, p = 0.045). The rs2228480GG hypertensive carriers had a higher risk of fracture (OR = 6.22, p = 0.0038). We found a synergic relation between the ESR1 rs3020331 and rs1999805 in femoral neck OP and HFx. The rs2234693 (PvuII) and rs9340799 (XbaI) polymorphisms are associated with a high risk forming a haplotype. The epistasis analysis suggests the contribution of both genes (ESR1/ESR2) to the risk of OP and fracture. Epistasis and involvement of obesity and hypertension lead to a significant modification of the risk.


Assuntos
Osteoporose , Receptores de Estrogênio , Epistasia Genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Osteoporose/genética , Polimorfismo de Nucleotídeo Único , Receptores de Estrogênio/genética
13.
Int J Cancer ; 150(9): 1455-1470, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913480

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm defined by the presence of t(9;22) translocation whose origin has been associated with the tridimensional genome organization. This rearrangement leads to the fusion of BCR and ABL1 genes giving rise to a chimeric protein with constitutive kinase activity. Imatinib, a tyrosine kinase inhibitor (TKI), is used as a first-line treatment for CML, though ~40% of CML patients do not respond. Here, using structured illumination microscopy (SIM) and 3D reconstruction, we studied the 3D organization patterns of the ABL1 and BCR genes, and their chromosome territories (CTs) CT9 and CT22, in CD34+ cells from CML patients that responded or not to TKI. We found that TKI resistance in CML is associated with high levels of structural disruption of CT9 and CT22 in CD34+ cells, increased CT volumes (especially for CT22), intermingling between CT9 and CT22, and an open-chromatin epigenetic mark in CT22. Altogether our results suggest that large-scale disruption of CT9 and CT22 correlates with the clinical response of CML patients, which could be translated into a potential prognostic marker of response to treatment in this disease and provide novel insights into the mechanisms underlying resistance to TKI in CML.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Cromossomos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Humanos , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/efeitos adversos
14.
Front Psychiatry ; 12: 753562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938210

RESUMO

Marijuana (Cannabis sp.) is among the most recurred controlled substances in the world, and there is a growing tendency to legalize its possession and use; however, the genotoxic effects of marijuana remain under debate. A clear definition of marijuana's genotoxic effects remains obscure by the simultaneous consumption of tobacco and other recreational substances. In order to assess the genotoxic effects of marijuana and to prevent the bias caused by the use of substances other than cannabis, we recruited marijuana users that were sub-divided into three categories: (1) users of marijuana-only (M), (2) users of marijuana and tobacco (M+T), and (3) users of marijuana plus other recreative substances or illicit drugs (M+O), all the groups were compared against a non-user control group. We quantified DNA damage by detection of γH2AX levels and quantification of micronuclei (MN), one of the best-established methods for measuring chromosomal DNA damage. We found increased levels of γH2AX in peripheral blood lymphocytes from the M and M+T groups, and increased levels of MNs in cultures from M+T group. Our results suggest a DNA damage increment for M and M+T groups but the extent of chromosomal damage (revealed here by the presence of MNs and NBuds) might be related to the compounds found in tobacco. We also observed an elevated nuclear division index in all marijuana users in comparison to the control group suggesting a cytostatic dysregulation caused by cannabis use. Our study is the first in Mexico to assess the genotoxicity of marijuana in mono-users and in combination with other illicit drugs.

15.
Cell Div ; 16(1): 6, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736484

RESUMO

BACKGROUND: It has been reported that the oncoprotein E7 from human papillomavirus type 16 (HPV16-E7) can induce the excessive synthesis of centrosomes through the increase in the expression of PLK4, which is a transcriptional target of E2F1. On the other hand, it has been reported that increasing MPS1 protein stability can also generate an excessive synthesis of centrosomes. In this work, we analyzed the possible role of MPS1 in the amplification of centrosomes mediated by HPV16-E7. RESULTS: Employing qRT-PCR, Western Blot, and Immunofluorescence techniques, we found that E7 induces an increase in the MPS1 transcript and protein levels in the U2OS cell line, as well as protein stabilization. Besides, we observed that inhibiting the expression of MPS1 in E7 protein-expressing cells leads to a significant reduction in the number of centrosomes. CONCLUSIONS: These results indicate that the presence of the MPS1 protein is necessary for E7 protein to increase the number of centrosomes, and possible implications are discussed.

16.
J Mol Diagn ; 23(10): 1306-1323, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358678

RESUMO

Breast cancer is one of the leading causes of mortality in women worldwide, and neoadjuvant chemotherapy has emerged as an option for the management of locally advanced breast cancer. Extensive efforts have been made to identify new molecular markers to predict the response to neoadjuvant chemotherapy. Transcripts that do not encode proteins, termed long noncoding RNAs (lncRNAs), have been shown to display abnormal expression profiles in different types of cancer, but their role as biomarkers in response to neoadjuvant chemotherapy has not been extensively studied. Herein, lncRNA expression was profiled using RNA sequencing in biopsies from patients who subsequently showed either response or no response to treatment. GATA3-AS1 was overexpressed in the nonresponder group and was the most stable feature when performing selection in multiple random forest models. GATA3-AS1 was experimentally validated by quantitative RT-PCR in an extended group of 68 patients. Expression analysis confirmed that GATA3-AS1 is overexpressed primarily in patients who were nonresponsive to neoadjuvant chemotherapy, with a sensitivity of 92.9% and a specificity of 75.0%. The statistical model was based on luminal B-like patients and adjusted by menopausal status and phenotype (odds ratio, 37.49; 95% CI, 6.74-208.42; P = 0.001); GATA3-AS1 was established as an independent predictor of response. Thus, lncRNA GATA3-AS1 is proposed as a potential predictive biomarker of nonresponse to neoadjuvant chemotherapy.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição GATA3/genética , Terapia Neoadjuvante/métodos , RNA Antissenso/genética , RNA Longo não Codificante/genética , Transcriptoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Prognóstico , RNA-Seq/métodos , Receptor ErbB-2/metabolismo , Resultado do Tratamento
17.
Cell Mol Neurobiol ; 41(6): 1285-1297, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32535722

RESUMO

Astrocytoma is the most common type of primary brain tumor. The risk factors for astrocytoma are poorly understood; however, germline genetic variants account for 25% of the risk of developing gliomas. In this study, we assessed the risk of astrocytoma associated with variants in AGT, known by its role in angiogenesis, TP53, a well-known tumor suppressor and the DNA repair gene MGMT in a Mexican population. A case-control study was performed in 49 adult Mexican patients with grade II-IV astrocytoma. Sequencing of exons and untranslated regions of AGT, MGMT, and TP53 from was carried in an Ion Torrent platform. Individuals with Mexican Ancestry from the 1000 Genomes Project were used as controls. Variants found in our cohort were then assessed in a The Cancer Genome Atlas astrocytoma pan-ethnic validation cohort. Variants rs1926723 located in AGT (OR 2.74, 1.40-5.36 95% CI), rs7896488 in MGMT (OR 3.43, 1.17-10.10 95% CI), and rs4968187 in TP53 (OR 2.48, 1.26-4.88 95% CI) were significantly associated with the risk of astrocytoma after multiple-testing correction. This is the first study where the AGT rs1926723 variant, TP53 rs4968187, and MGMT rs7896488 were found to be associated with the risk of developing an astrocytoma.


Assuntos
Angiotensinogênio/genética , Astrocitoma/genética , Neoplasias Encefálicas/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Variação Genética/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Adulto , Astrocitoma/epidemiologia , Astrocitoma/patologia , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , México/epidemiologia , Pessoa de Meia-Idade
18.
Rev. invest. clín ; 72(6): 372-379, Nov.-Dec. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1289732

RESUMO

Abstract Background: Ovarian cancer is the most lethal gynecologic cancer. Although most patients respond adequately to the first-line therapy, up to 85% experience a recurrence of disease, which carries a poor prognosis. Mitotic arrest deficiency 1 is a protein that helps in the assembly of the mitotic spindle assembly checkpoint by preventing anaphase until all chromatids are properly aligned. A single-nucleotide polymorphism in the MAD1L1 gene is prevalent in patients with advanced epithelial ovarian cancer and alters the way in which it responds to chemotherapy. Objective: The objective of the study was to study the relationship between the rs1801368 polymorphism of MAD1L1 and prognosis of ovarian adenocarcinoma. Methods: A total of 118 patients in whom the MAD1L1 gene was sequenced were analyzed using descriptive and comparative statistics. Results: Patients carrying the wild-type genotype had a higher distribution of early-stage disease. Having a MAD1L1 polymorphic allele increased the risk of being non-sensitive to chemotherapy. The median disease-free survival for patients with the wild-type MAD1L1 was 46.93 months, compared to 10.4 months for patients with at least one polymorphic allele. Conclusions: The rs1801368 polymorphism of MAD1L1 gene worsens prognosis in patients with ovarian adenocarcinoma. Traditional therapy for ovarian cancer might not be optimal in patients carrying this polymorphism.


Assuntos
Humanos , Feminino , Adolescente , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Neoplasias Ovarianas/genética , Adenocarcinoma/genética , Proteínas de Ciclo Celular/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Ovarianas/mortalidade , Prognóstico , Adenocarcinoma/mortalidade , Taxa de Sobrevida , Estudos Retrospectivos
19.
Rev Invest Clin ; 72(6): 372-379, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33052898

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecologic cancer. Although most patients respond adequately to the first-line therapy, up to 85% experience a recurrence of disease, which carries a poor prognosis. Mitotic arrest deficiency 1 is a protein that helps in the assembly of the mitotic spindle assembly checkpoint by preventing anaphase until all chromatids are properly aligned. A single-nucleotide polymorphism in the MAD1L1 gene is prevalent in patients with advanced epithelial ovarian cancer and alters the way in which it responds to chemotherapy. OBJECTIVE: The objective of the study was to study the relationship between the rs1801368 polymorphism of MAD1L1 and prognosis of ovarian adenocarcinoma. METHODS: A total of 118 patients in whom the MAD1L1 gene was sequenced were analyzed using descriptive and comparative statistics. RESULTS: Patients carrying the wild-type genotype had a higher distribution of early-stage disease. Having a MAD1L1 polymorphic allele increased the risk of being non-sensitive to chemotherapy. The median disease-free survival for patients with the wild-type MAD1L1 was 46.93 months, compared to 10.4 months for patients with at least one polymorphic allele. CONCLUSIONS: The rs1801368 polymorphism of MAD1L1 gene worsens prognosis in patients with ovarian adenocarcinoma. Traditional therapy for ovarian cancer might not be optimal in patients carrying this polymorphism.


Assuntos
Adenocarcinoma/genética , Proteínas de Ciclo Celular/genética , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único , Adenocarcinoma/mortalidade , Adolescente , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/mortalidade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
20.
Rev Invest Clin ; 73(3)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32488223

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecologic cancer. Although most patients respond adequately to the first-line therapy, up to 85% experience a recurrence of disease, which carries a poor prognosis. Mitotic arrest deficiency 1 is a protein that helps in the assembly of the mitotic spindle assembly checkpoint by preventing anaphase until all chromatids are properly aligned. A single-nucleotide polymorphism in the MAD1L1 gene is prevalent in patients with advanced epithelial ovarian cancer and alters the way in which it responds to chemotherapy. OBJECTIVE: The objective of the study was to study the relationship between the rs1801368 polymorphism of MAD1L1 and prognosis of ovarian adenocarcinoma. METHODS: A total of 118 patients in whom the MAD1L1 gene was sequenced were analyzed using descriptive and comparative statistics. RESULTS: Patients carrying the wild-type genotype had a higher distribution of early-stage disease. Having a MAD1L1 polymorphic allele increased the risk of being non-sensitive to chemotherapy. The median disease-free survival for patients with the wild-type MAD1L1 was 46.93 months, compared to 10.4 months for patients with at least one polymorphic allele. CONCLUSIONS: The rs1801368 polymorphism of MAD1L1 gene worsens prognosis in patients with ovarian adenocarcinoma. Traditional therapy for ovarian cancer might not be optimal in patients carrying this polymorphism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...